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I
nvasive meningococcal disease (IMD) is an epidemic

infectious disease highly influenced by climatic fac-

tors. Climate plays an important role in both the

spatial distribution of the disease and in the seasonality

of IMD as seen all over the world (1). It is mentioned as

one of the infectious diseases likely to be affected by

climate change in the Fourth Assessment report of the

Intergovernmental Panel on Climate Change (IPCC) (2).

IMD is an airborne disease with humans as its only

reservoir. Global warming will change precipitation levels

with a combination of more severe droughts in some

areas and more frequent heavy precipitation events in

others (2), and these are events likely to affect the

incidence and geographical distribution of IMD (1).

Effects suspected to be the result of climate change are

already evident on the distribution of IMD epidemics in

Africa (1, 3).

Research in the field of infectious diseases and climate

has focused on vector-borne diseases like malaria and

dengue fever (1, 4�8). Less is known about the effects of

climate on airborne diseases like IMD.

The aim of this review is to give an overview of the

current knowledge of how climate affects IMD and

to more thoroughly investigate the climate research

concerning IMD that has been published in the last

decade.

The disease and its prevention
IMD includes meningococcal septicaemia and meningo-

coccal meningitis. The disease is prevalent all over the

world. It is caused by Neisseria meningitidis, a gram-

negative coccoid bacteria. Treatment of IMD is still not a

major problem as N. meningitidis is sensitive to a number

of antibiotics, although betalactamase resistance is seen

in some parts of the world (9�12). Despite treatment,

4�17% of the patients die (13�18) and 8�20% of the

survivors will suffer from lifelong sequelae like deafness,

cognitive impairment and other central nervous system

complications (19�22). The age groups most susceptible

to the disease are young children, adolescents and young

adults (23, 24).

N. meningitidis can be divided into serogroups on the

basis of polysaccharide capsular antigens. The major

pathogenic serogroups are A, B, C, W135, X and Y (24,

25). There are differences between the serogroups, both

in virulence and in their capacity to cause epidemics.

Large-scale epidemics are mainly caused by serogroup

A, although serogroups W135 and C have also been

implicated in epidemics. Smaller outbreaks and singular

cases of the disease are more commonly caused by

serogroups B and C and less frequently byother serogroups

(24, 26, 27).

IMD is transmitted through respiratory secretion or

saliva. N. meningitidis is found mainly in the upper

respiratory tract (URT). Acquisition of the bacteria

can either be transient or result in colonisation of the

URT epithelium (carriage) or in invasive disease (24). The

epidemiology of IMD is complex due to the great number

of symptom-free carriers of the bacteria. In populations

studied, 2�70% of people have been found to be carriers

of the bacteria in their airways (24, 28�30). In Africa,

carrier rates have been shown to be higher during

epidemics than in the endemic situation (24, 28, 30, 31)

and less frequent in small children than in adolescents

and adults (24, 31). Carriage of Neisseria plays an

important role in the epidemiology of the disease, a role

that is still not well understood (29, 32).

Vaccines exist for serogroups A, C, W135, X and Y

but no commercial vaccine has yet been produced for

serogroup B. Limitations of the vaccines are short

duration of immunity, 3�5 years, low immunogenity in

children under two years and no effect on carriage

of the bacteria (24, 25). New conjugate vaccines have

been developed for serogroups A and C, with prolonged

immunity, better immunological effect in young children

and with protective effects against carriage (24, 33�36).

Epidemiology of invasive meningococcal
disease (IMD)

Meningitis belt
In 1963, the French physician Lapeyssonnie described a

geographically well-defined area in Sub-Saharan Africa

with an exceptionally high incidence of meningococcal

meningitis (37). This area, the classical meningitis belt

(Fig. 1), has seen epidemics of the disease at intervals of
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5�10 years during the last 100 years (38). The first well-

described epidemic in Africa was in Nigeria in 1905 (38).

The meningitis belt stretches from Ethiopia and the Sudan

in East Africa to Mali, Senegal and Guinea in the west (38).

The most common cause of these epidemics is N. meningi-

tidis serogroup A (37, 38). In the epidemic years of 2002�
2003, serogroup Awas substituted by serogroup W135 that

caused a large epidemic with its main focus in Burkina

Faso (39�42), but since then serogroup A has been the

dominant pathogen again (38). In the 2002�2003 serogroup

W135 epidemic, as well as in a serogroup A epidemic

starting in the Sudan and Chad in 1988, it has been

demonstrated that one likely source of introduction of new

meningococcal bacterial strains in the meningitis belt is

pilgrims returning from the Hajj in Saudi Arabia (43�45).

In the last decades, African countries south of the belt

have experienced large IMD epidemics and there has

been an extension of the belt into countries like Togo,

Cameroon, Côte d’Ivoire and Benin (3, 46, 47). In East

Africa, Kenya, Uganda and Tanzania have suffered large-

scale IMD epidemics (3, 18, 38, 47�49). The health

impact of IMD in Africa makes the disease a main focus

for interventions by health agencies in the countries of

the meningitis belt. During epidemics in the 1990s an

incidence of 1,000 cases per 100,000 was seen (24). An

estimated 200,000 people were hit by the disease in the

serogroup A epidemic of 1996 (32, 49).

Outside the belt
IMD is a global disease seen in most countries of the

world. The incidence of the disease is however lower than

in the meningitis belt. In Europe it ranges between

0.2 and 14 cases per 100,000 and 0.2�4 per 100,000 in

USA (51). In most countries the disease is endemic with

small outbreaks, mainly in crowded settings like schools

and military establishments and is mainly caused by

serogroups B and C (24, 52). Changes in the epidemiol-

ogy of IMD due to the introduction of the serogroup

C conjugate vaccine are expected to be seen in the future

(51). Infrequently epidemics of serogroup A meningitis

have been seen outside Africa, for example, in China (53),

Nepal (54), India (55) and Russia (56).

Climate and invasive meningococcal disease
(IMD)
Two main features of the IMD are influenced by climatic

factors: the geographical distribution of high disease

incidence with large epidemics in the meningitis belt

and the seasonality of the disease seen globally. During

the last decade, with growing interest in the effects of

climate on health, a number of studies, spatial as well

as temporal, of climatic effects on IMD have been

conducted and models for predicting epidemics have

been proposed. The majority of these studies have

concerned IMD in Africa (3, 50, 58�62).
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Fig. 1. The classic African meningitis belt.

Source: Control of epidemic meningococcal disease. WHO practical guidelines. 2nd edition 1998. WHO/EMC/BAC/98.3.

Available from: http://www.who.int/csr/resources/publications/meningitis/whoemcbac983.pdf
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Geographical distribution
Lapeyssonnie described the boundaries of the meningitis

belt as equivalent to the annual rainfall isohyets of 300 mm

in the north, and 1,100 mm in the south, thereby indicating

that climatic factors are involved in the geographical

distribution (37). Subsequent research in the meningitis

belt have found that the optimal climate for transmission

of the disease is the savannah climate south of the Sahel,

with an annual precipitation index of 300�1,100 mm,

extremely dry but warm winter seasons and a relatively

abrupt onset of the rainy season (3, 57). During the last

decade climate research concerning the geographical

distribution of IMD in Africa has made important

progress and has resulted in risk mapping models.

Risk mapping
In a study by Molesworth and colleagues (3) in 2002, the

spatial distribution of IMD epidemics in Africa occurring

between 1980 and 1999 was mapped using a dataset with

published and unpublished epidemics and surveillance

data of number of cases reported to the WHO (Fig. 2).

Maps showing the location and maximum incidence rates

of 144 epidemics in Africa were constructed. The maps

demonstrated that the risk of IMD epidemics is almost as

high in many geographical areas south of the meningitis

belt, like the Rift Valley and the Great Lakes region,

but that the maximum number of cases is higher in the

countries in the belt as compared to countries outside

the belt. In accordance with the suggested boundaries of

the meningitis belt proposed by Lapeyssonnie 40 years

previously, the risk map also demonstrated a striking

association between IMD epidemics and the 300�1,100

rainfall isohyets in all of Africa, also outside the belt.

The risk models constructed by Molesworth and

colleagues have been further developed to investigate

the environmental factors driving the IMD epidemics

in Africa. In a study by Molesworth and colleagues

published in 2003 (58), they analysed the same IMD

epidemic and surveillance data as in (3) together with

information on climate variables like absolute humidity,

dust and rainfall, and data on land-cover type and

population density. They found that absolute humidity

and land-cover type were the climatic factors that best

correlated to IMD epidemics. Among other factors found

to be independently associated with IMD epidemics,

dust was especially interesting as the dustiness in the

meningitis belt increased dramatically due to the Sahelian

droughts of the 1970s and 1980s (58). The model also

demonstrated that climate zones not having distinct wet

and dry seasons, such as deserts and the humid and often

Fig. 2. Risk map for IMD. Districts and provinces experiencing meningococcal meningitis epidemics in Africa 1980�1999. After

Molesworth et al. (3). Available from: http://www.liv.ac.uk/researchintelligence/issue15/graphics/15/meningitis_01.gif
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forested parts of coastal and central Africa, are less likely

to have epidemics than those with contrasting seasons

like the semi-arid savannah and grassland found in the

Sahel and eastern and southern Africa.

The risk model of Molesworth and colleagues was

evaluated in a prospective study of IMD epidemics in

Africa 2002�2004 by Savory and colleagues (59). They

found that only 59% of the 71 epidemics that occurred

during the time period were located within the meningitis

belt. Most of the new epidemic districts were however

located in areas geographically contiguous to the belt.

The epidemics in the meningitis belt had a significantly

higher mean number of cases than epidemics outside the

belt. The authors concluded that there is an extension

of the meningitis belt particularly into districts in

Côte d’Ivoire, Togo, the Central African Republic and

Cameroon (59). The risk mapping of IMD provides a

tool for priority planning of vaccination campaigns, for

further research on climate effects on IMD in Africa and

a model that can be suitable for the development of early

warning systems (EWS) for the disease. It will also be an

important instrument for surveillance of the impact of

future climate change (57).

Seasonality
Lapeyssonnie also described the seasonality of the

disease, with the peak of epidemics during the dry winter

season. Frequently the epidemics ceased when the rainy

season started, to be resumed in the dry season of the

next year (37, 63, 64).

Subsequent studies have suggested low absolute hu-

midity (58) and the dry Harmattan winter winds (62) as

the main climatic driver behind the seasonality in the

meningitis belt. Sultan and colleagues found a strong

correlation between the maximum Harmattan wind index

and the onset of IMD epidemics in a study in Mali during

1994�2002 (62). They concluded that the seasonal rise in

meningitis cases corresponded to large-scale atmospheric

phenomena associated with the Sahelian dry season (62).

The peak of the IMD epidemics comes when the

absolute humidity is at its lowest and the epidemics

subside with rising humidity before the annual rain

period begins (28). In a study in Niger, Jackou-Boulama

and colleagues (65) found a negative correlation between

rainfall and IMD incidence. The IMD incidence fell when

the rain season began. In contrast, incidence of menin-

gococcal carriage has been found to rise with increasing

atmospheric humidity in a study by Mueller and collea-

gues (66) where they investigated carriage rates in the

non-epidemic year of 2003 in Burkina Faso. This result

stresses the complex role of carriers in the understanding

of IMD.

Many countries outside Africa, especially in the

Northern hemisphere, show a similar seasonal incidence

of the disease as in the meningitis belt (67�71) with peak

incidence during the dry winter months, but the relation

between high incidence and low humidity seen in the

meningitis belt is not a consistent finding outside the

belt. In New Zealand a study showed that the incidence

of IMD increased with increasing humidity and cooler

temperatures, but declined, as in the meningitis belt, with

heavy rain (72). UK studies have shown that IMD

outbreaks are correlated with high humidity and rapid

changes in relative humidity before outbreaks (73, 74).

The proposed biological explanation for the climate

effects on IMD is that low humidity, dry winds and high

levels of dust in the air injures the barriers of the URT

mucosa, thus facilitating IMD (18, 48). N. meningitidis

can more easily penetrate injured mucosal membranes

and access the blood stream and the meninges, where

it causes disease (18). The mechanisms of interaction

between N. meningitidis and the mucosal epithelial cells

are well known (18, 75), but to my knowledge no studies

concerning the effects of climatic factors on the patho-

genesis and transmission of N. meningitidis in vivo have

been done, perhaps mainly due to the lack of a reliable

animal model for the bacteria (76).

Early warning systems (EWSs)
One of the main aims of EWSs for IMD is to predict

epidemics so that mass vaccination can begin in time

to curb the spread of disease (57, 59, 61). One tool for

identifying epidemics is the IMD case number thresholds

presented by WHO as an EWS in the year 2000. It

distinguishes between the usual annual rise in IMD

incidence and epidemics (77). To find climatic factors

that can predict IMD epidemics, Thomson and collea-

gues investigated a large number of environmental factors

in a study in Burkina Faso, Niger, Mali and Togo (61).

They found that land-cover type (savannah, grassland

and barren areas) was associated with IMD incidence,

rainfall and dust. Areas with barren land had the lowest

IMD incidence and highest dust levels, and in savannah

areas the rainy season started earlier and was more

intense than in grassland and barren areas. They could

also demonstrate that excess dust in October and a

rainfall deficit in January were the best predictors for

epidemics. Annual meningitis incidence anomalies (e.g.

early cases) at district level were significantly correlated

with monthly climate anomalies for rainfall and dust

in the pre, post and epidemic seasons, with stronger

relationship in savannah areas (57).

The performance of an EWS based on climate indices

has recently been investigated in a study by Yaka and

colleagues (60). They identified Burkina Faso and Niger

as the two countries with the highest risk of IMD

epidemics using data from a previously published study

by Broutin and colleagues (50). By computing meningitis

cases in the two countries with climate variables, they

found a significant correlation between IMD incidence
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and climatic factors during the winter period, October�
January, in Niger. In Burkina Faso the correlation was

not significant. This study stresses the importance of

including other variables than climate in future EWSs to

be able to predict epidemics.

Climate is a driving factor in the seasonality of the

disease and in the geographical distribution of IMD in

the meningitis belt, but climatic factors alone cannot

explain the high disease incidence in the meningitis belt or

the periodicity of epidemics. Immunity in the population,

carriage rates, vaccination coverage, social interactions

and the introduction of new strains of meningococci are

other main factors to be considered to fully understand

the dynamics of IMD in the meningitis belt (57, 61).

Discussion
The epidemiology of IMD is closely related to climatic

factors like air humidity, rainfall and dust (3, 58, 61, 65).

The disease is a special challenge to research in the field

of disease and climate change as it is spread all over

the world and in almost all types of climate zones. The

meningitis belt in the Sahel region of Africa has the

highest IMD incidence and large epidemics mainly

caused by serogroup A meningococci is one of the main

health issues for the countries in the belt (30, 78).

Pre-epidemic vaccination against serogroups A and

W135, the most common serogroups causing epidemics

in the meningitis belt, is feasible, but the vaccine effect only

lasts for three to five years, although the new conjugate

vaccines now in the pipeline may improve that duration

(79, 80). To keep the population constantly immune to the

disease is too costly and demands a vaccination infra-

structure that does not yet exist in the countries involved.

Mass vaccination in the face of a current epidemic is often

done too late (81).

In Africa, 350 million people lives in areas at risk for

IMD epidemics (57, 58). Only 40 million doses of the new

conjugate A vaccine will be available during the first

years. Risk models could guide selection of priority areas

and demonstrate vaccination efficacy through surveil-

lance. They could also provide support for the control of

epidemics in areas where the population has not had

access to new vaccines (57).

Meteorological surveillance offers a possibility for

developing EWSs for epidemic preparedness (55�59).

With the aid of EWSs, vaccination could be made more

effective. Attempts at EWSs have been promising but

need further refinement (55�57). For future predictive

models to be effective, meteorological data must

be included in computations together with data on

population immunity, changes in population structure

and the dynamics of N. meningitidis carriers (57, 61).

There also needs to be an improvement of disease

surveillance data and weather forecasting data in the

African continent (57). It is also crucial that health

authorities in the countries at most risk for IMD

epidemics are interested in the implementation of EWSs

and that economic resources are allocated for them (82,

83, 85). In 2008, the University Corporation for Atmo-

spheric Research (UCAR), working with an international

team of health and weather organisations, launched the

Meningitis forecast project. The aim of the project is to

provide long-term weather forecasts to medical officials

in Africa to help reduce outbreaks of meningitis. The

forecasts will enable local health providers to target

vaccination programmes more effectively (see http://

www.ucar.edu/news/releases/2008/meningitis.jsp).

Future climate change and invasive meningococcal
disease (IMD)
In the 21st century the main projected climate changes in

Africa are warming, especially in sub-tropical regions and

a decrease in annual rainfall, especially in North Africa

and the northern parts of Sahara. By 2080, an increase of

5�8% of arid and semi-arid land in Africa is projected

(78). The Sahel, where the meningitis belt is situated, is

one of the regions in Africa most vulnerable to climate

change. The factors that determine the southern bound-

ary of the Sahara and rainfall in the Sahel have attracted

special interest among climate scientists because of the

extended drought experienced in this region in the 1970s

and 1980s (84). Not only warming and decreased rainfall

but also complex feedback mechanisms due to deforesta-

tion, land-cover change and changes is atmospheric dust-

loading are also playing a role, particularly for drought

persistence in the Sahel and its surrounding areas (78).

A likely scenario for the projected increase in tempera-

ture and decrease in rainfall is more frequent and longer

droughts and thereby a likely increase in the amount

of dust in the surface air, together with alterations of

atmospheric humidity. These climatic factors will most

likely have negative effects on IMD in the meningitis belt,

with epidemics of longer duration and maybe also higher

incidence. But the effects these climate changes may have

on the incidence of meningococcal carriage must also be

considered, as carriage incidence plays an important role

in the dynamics of IMD epidemics (24, 29, 31). This

makes constructing scenarios for IMD more complex,

especially as some previous studies have shown negative

correlations between carriage and air humidity (66).

Warming and reduced rainfall will also affect the land-

cover types in the region with extension of the savannah

southwards. Populations at the margin of the current

distribution of IMD will be particularly affected (3, 58).

The meningitis belt has already expanded (48, 58, 85, 86)

and countries south of the belt have suffered from

epidemics to an extent not previously reported, for

example, in Cameroon (46), Ghana (87) and Togo (88).

The population at risk of IMD epidemics is likely to

expand, but this prediction is uncertain as droughts
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also play a role in human migration and population

dislocation (78).

Future research and surveillance
Expansion of the meningitis belt is already evident and is

likely to progress with climate change in Africa. Close

surveillance of IMD incidence in the areas bordering the

meningitis belt, and of other African countries with similar

climates, for early detection of climate change effects is

therefore of uttermost importance (3). Further develop-

ment of existing EWSswith inclusion of more demographic

data, data onvaccination coverage and natural immunity in

the populations and bacteriological surveillance data on

meningococcal strains, is necessary for predicting epi-

demics in time for massvaccination campaigns to be

effective (60). Further studies on the relation between

climatic factors and IMD, both in the meningitis belt in

Africa and in countries outside the belt in the Northern and

Southern hemisphere are needed, to be able to refine

knowledge on how climate affects both the carrier state

and the disease. Of special interest are epidemics outside

Africa within the 300�1,100 mm rainfall isohyets (57).

There are differences between different serogroups of

meningococci, both in virulence and in their ability to

cause epidemics, that need to be investigated to a greater

extent to better understand differences in epidemiology

between serogroup A in the meningitis belt and other

serogroups, mainly C and B in countries outside the belt

(24, 26, 27). Molecular biology studies are needed to

better understand the effects of climate on the binding

and penetration of N. meningitidis in mucosal mem-

branes. This includes development of tissue models and

animal models for N. meningitidis.
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44. Salih MA, Danielsson D, Bäckman A, Caugant DA, Achtman

M, Olcén P. Characterization of epidemic and non-epidemic

Neisseria meningitidis serogroup A strains from Sudan and

Sweden. J Clin Microbiol 1990; 28: 1711�9.

45. Lingappa JR, Al-Rabeah AM, Hajjeh R, Mustafa T, Fatani A,

Al-Bassam T, et al. Serogroup W-135 meningococcal disease

during the Hajj, 2000. Emerg Infect Dis 2003; 9: 665�71.

46. Cunin P, Fonkoua M-C, Kollo B, Bedifeh AB, Bayanak P,

Martin PMV. Serogroup A Neisseria meningitidis outside

meningitis belt in Southwest Cameroon. Emerg Inf Dis 2003;

9: 1351�3.

47. Anonymous. Outbreak news. Meningococcal disease, African

meningitis belt, epidemic season 2006. Wkly Epidemiol Rec

2006; 81: 119�20.

48. Moore PS. Meningococcal meningitis in sub-Saharan Africa:

a model for the epidemic process. Clin Infect Dis 1992; 14:

515�25.

49. Anonymous. Response to epidemic meningitis in Africa, 1997.

Wkly Epidemiol Rec 1997; 72: 313�18.

50. Broutin H, Philippon S, Constantin de Magny G, Courel F,

Sultan B, Guegan JF. Comparative study of meningitis

dynamics across nine African countries: a global perspective.

Int J Health Geo 2007; 6. DOI: 10.1186/1476-072X-6-29.

Available from: http://www.ij-healthgeographics.com/content/6/

1/29 [cited 12 September 2009].

51. Harrison LH, Trotter CL, Ramsay ME. Global epidemiology of

meningococcal disease. Vaccine 2009; 27: B51�63.

52. Thikomirov E, Santamaria M, Esteves K. Meningococcal

disease: public health burden and control. World Health Stat

Q 1997; 50: 170�7.

53. Wang JF, Caugant DA, Li X, Hu X, Poolman JT, Crowe BA,

et al. Clonal and antigenic analysis of serogroup A Neisseria

meningitidis with particular reference to epidemiological features

of epidemic meningitis in the People’s Republic of China. Infect

Immun 1992; 60: 5267�82.

54. Cochi SL, Markowitz LE, Joshi DD, Owens RC Jr, Stenhouse

DH, Regmi DN, et al. Control of epidemic serogroup A

meningococcal meningitis in Nepal. Int J Epidemiology 1987;

16: 91�7.

55. Bhatia SL, Sharma KB, Natarajan R. An outbreak of menin-

gococcal meningitis in Delhi, India. J Med Res 1968; 56: 259�63.

56. Achtman M, van der Ende A, Zhu P, Koroleva IS, Kusecek B,

Morelli G, et al. Molecular epidemiology of serogroup a

meningitis in Moscow, 1969 to 1997. Emerg Infect Dis 2001;

7: 420�7.

57. Cuevas LE, Jeanne I, Molesworth A, Bell M, Savory EC,

Connor SJ, et al. Risk mapping and early warning systems for

the control of meningitis in Africa. Vaccine 2007; 25: A12�7.

58. Molesworth AM, Cuevas LE, Connor SJ, Morse AP, Thomson

MC. Environmental risk and meningitis epidemics in Africa.

Emerg Inf Dis 2003; 9: 1287�93.

59. Savory EC, Cuevas LE, Yassin MA, Hart CA, Molesworth AM,

Thomson MC. Evaluation of the meningitis epidemics risk

model in Africa. Epidemiol Infect 2006; 134: 1047�51.

60. Yaka P, Sultan B, Broutin H, Janicot S, Philippon S, Fourquet

N. Relationship between climate and year to year variability in

meningitis outbreaks: a case study in Burkina Faso and Niger.

Int J Health Geogr 2008; 7: 34. Available from: http://www.ij-

healthgeographics.com/content/7/1/34 [cited 12 September

2009].

61. Thomson MC, Molesworth AM, Djingarey MH, Yameogo KR,

Belanger F, Cuevas LE. Potential of environmental models to

predict meningitis epidemics in Africa. Trop Med Int Health

2006; 11: 781�8.
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Smith T, et al. Clonal waves of Neisseria colonisation and

disease in the African meningitis belt: eight-year longitudinal

study in northern Ghana. PLoS Med 2007; 4: e101.

88. Aplogan A, Batchassi E, Yakoua Y, Croisier A, Aleki A,

Schlumberger M, et al. An epidemic of meningococcal menin-

gitis in the region of Savanes in Togo in 1997: research and

control strategies. Sante 1997; 7: 384�90.

*Helena Palmgren
Department of Infectious Diseases
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